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We investigate the dynamics of Einstein equations in the vicinity of the two recently
described types of singularity of anisotropic and homogeneous cosmological models
described by the action

S=
∫

d4x
√−g{F(φ)R− ∂aφ∂

aφ − 2V(φ)},
with generalF(φ) andV(φ). The dynamical nature of each singularity is elucidated, and
we show that both are, in general, dynamically unavoidable, reinforcing the unstable
character of previous isotropic and homogeneous cosmological results obtained for the
conformal coupling case.
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1. INTRODUCTION

We have recently (Abramoet al., 2003) studied the singularities of homoge-
neous and anisotropic solutions of cosmological models described by the action

S=
∫

d4x
√−g{F(φ)R− ∂aφ∂

aφ − 2V(φ)}, (1)

with generalF(φ) andV(φ). Such singularities appeared in the study of the robust-
ness of previously considered (Gunziget al., 2001) homogeneous and isotropic
solutions of cosmological models governed by (1) withF(φ) = 1− 1

6φ
2, corre-

sponding to the so-called conformal coupling, andV(φ) = m
2 φ

2− Ä
4 φ

4. These ho-
mogeneous and isotropic solutions present some novel and interesting dynamical
behaviors such as superinflation regimes, a possible avoidance of big-bang and big-
crunch singularities through classical birth of the universe from empty Minkowski
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space, spontaneous entry into and exit from inflation, and a cosmological history
suitable in principle for describing quintessence. The appearance of the singulari-
ties implies that these results are not robust; they are radically changed, even for
small disturbances in initial conditions and in the model itself. We have shown
that the singularities are, essentially, of two types. The first one corresponds to the
hypersurfacesF(φ) = 0. It is not present in the isotropic case, and it implies that
all previous homogeneous and isotropic solutions passing from theF(φ) > 0 to
theF(φ) < 0 region are extremely unstable against anisotropic perturbations. The
second type of singularity corresponds toF1(φ) = 0, with

F1(φ) = F(φ)+ 3

2
(F ′(φ))2, (2)

and it is present even for the homogeneous and isotropic cases. Although for small
deviations from the conformal coupling the latter singularities are typically very far
from the region of interest, in the general case they can alter qualitatively the global
dynamics of the model due to restrictions that they impose on the phase space.
Again, the persistence of some of our previously described results, in particular
the ones concerning heteroclinic and homoclinic solutions, are challenged.

Both kinds of singularities have already been described before. To the best
of our knowledge, Starobinski (1981) was the first to identify the singularity cor-
responding to the hypersurfacesF(φ) = 0, for the case of conformally coupled
anisotropic solutions. Futamase and coworkers (Futamaseet al., 1981; Futamase
and Maeda, 1989) identified both singularities in the context of chaotic inflation
in F(φ) = 1− ξφ2 theories (see also Bertolami, 1987; Deser, 1984; Hosatani,
1985). The first singularity is always present forξ > 0 and the second one for
0 < ξ < 1/6. Our conclusions were, however, more general since we treated the
case of generalF(φ) and our results were based on the analysis of true geometrical
invariants. Our main result is that the system governed by (1) isgenericallysingu-
lar on both hypersurfacesF(φ) = 0 andF1(φ) = 0. Here,genericallymeans that
it is possible to construct nonsingular models if one fine-tunesF(φ) andV(φ), as
we have shown in the literature (Abramoet al., 2003). The physical relevance of
such a fine-tuned model is still unclear.

As was shown in the literature (Abramoet al., 2003), one can advance that
there are some geometrically special regions in the phase space of the model in
question by a very simple analysis of the equations derived from the action (1).
They are the Klein–Gordon equation

¤φ − V ′(φ)+ 1

2
F ′(φ)R= 0, (3)

and the Einstein equations

F(φ)Gab = (1+ F ′′(φ))∂aφ∂bφ − 1

2
gab[(1+ 2F ′′(φ))∂cφ∂

cφ + 2V(φ)]

−F ′(φ)(gab¤φ −∇aφ∇bφ). (4)
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We consider now the simplest anisotropic homogeneous cosmological model, the
Bianchi type I, whose spatially flat metric is given by

ds2 = −dt2+ a2(t)dx2+ b2(t)dy2+ c2(t)dz2. (5)

The dynamically relevant quantities here are

H1 = ȧ

a
, H2− ḃ

b
, and H3 = ċ

c
. (6)

For such a metric and a homogeneous scalar fieldφ = φ(t), after using the Klein–
Gordon Eq. (3), Eq. (4) can be written as

F(φ)G00 = 1

2
φ̇2+ V(φ)− F ′(φ)(H1+ H2+ H3)φ̇, (7)

1

a2
F(φ)G11 = 1+ 2F ′′(φ)

2
φ̇2− V(φ)− F ′(φ)

(
H1φ̇ + V ′(φ)− F ′(φ)

2
R

)
, (8)

1

b2
F(φ)G22 = 1+ 2F ′′(φ)

2
φ̇2− V(φ)− F ′(φ)

(
H2φ̇ + V ′(φ)− F ′(φ)

2
R

)
, (9)

1

c2
F(φ)G33 = 1+ 2F ′′(φ)

2
φ̇2− V(φ)− F ′(φ)

(
H2φ̇ + V ′(φ)− F ′(φ)

2
R

)
, (10)

It is quite simple to show that Eqs. (8)–(10) are not compatible, in general, on
the hypersurfaceF(φ) = 0. Subtracting (9) and (10) from (8) we have, on such
hypersurface, respectively,

F ′(φ)(H1− H2)φ̇ = 0 and F ′(φ)(H1− H3)φ̇ = 0. (11)

Hence, they cannot be fulfilled in general for anisotropic metrics. As it was shown,
this indeed corresponds to a geometrical singularity that cannot be prevented in
general by requiring thatF ′(φ) = 0 or φ̇ = 0 on the hypersurface.

As to the second singularity we have, after taking the trace of the Einstein
equations, that

R= R(φ, φ̇) = 1

F1(φ)
(4V(φ)+ 3V ′(φ)F ′(φ)− (1− F ′′(φ))φ̇2). (12)

Inserting Eq. (12) in the Klein–Gordon Eq. (3), one can see that it contains terms
that are singular forF1(φ) = 0. Again, as we will see, this corresponds to an
unmovable geometrical singularity, and it cannot be eliminated, in general, by
demanding thatF ′(φ) = 0 on the hypersurfaceF1(φ) = 0. On both the hypersur-
facesF(φ) = 0 andF1(φ) = 0 the Cauchy problem is ill-posed, since one cannot
choose general initial conditions.

The hypersurfacesF(φ) = 0 andF1(φ) = 0 also prevent the global definition
of an Einstein frame for the action (1), defined by the transformations
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g̃ab = F(φ)gab, (13)(
dφ̃

dφ

)2

= F1(φ)

2F(φ)2
. (14)

It is well known that in the Einstein frame the Cauchy problem is well posed.
Again, the impossibility of defining a global Einstein frame shed some doubts
about the general Cauchy problem. Moreover, the standard perturbation theory for
helicity-2 and helicity-0 excitations, derived directly from Eqs. (13) to (14), fails
on both hypersurfaces (Esposito-Farese and Polarski, 2001).

The question to be addressed in the following sections is the dynamical behav-
ior of the Eqs. (3) and (7)–(10) in the vicinity of the two hypersurfaces correspond-
ing toF(φ) = 0 andF1(φ) = 0. As we will see, both hypersurfaces are dynamically
unavoidable, meaning that they have an attractive neighborhood, excluding defini-
tively the possibility that these singularities are hidden by some dynamical barrier
that would prevent the solutions to reach them. Whenever a solution enter in the
attractive neighborhood, it will unavoidably reach the singular hypersurface.

2. NONCONSERVATIVE SYSTEMS AND THE DIVERGENCE
THEOREM

For Hamiltonian systems, as a consequence of Liouville theorem, phase space
volumes are preserved under the system time evolution. That means that if one
chooses an initial closed hypersurfaceS0 in the phase space and let each point
of S0 evolve in time according to the system equations, the closed hypersurface
S0 will evolve to another closed hypersurfaceSt at some latter timet , and the
volumesV of the region enclosed byS0 andSt are exactly the same,V(0)= V(t).
This is a characteristic of conservative systems. The system given by Eqs. (3) and
(7)–(10) is not conservative. By choosing the set of coordinates (φ,ψ p, q, r ) (with
ψ = φ̇ p = H1+ H2+ H3, q = H1− H2, andr = H1− H3), for the phase space
P, Eqs. (3) and (7)–(10) can be cast in the form

φ̇, ψ̇ , ṗ, q̇, ṙ = EW(φ, ψ, p, q, r ). (15)

For the metric (5), we have the following identities

G00 = H1H2+ H2H3+ H1H3,

G11 = a2

(
Ḣ1+ H1(H1+ H2+ H3)− 1

2
R

)
,

G22 = b2

(
Ḣ2+ H2(H1+ H2+ H3)− 1

2
R

)
,

G33 = c2

(
Ḣ3+ H3(H1+ H2+ H3)− 1

2
R

)
,

R = 2
(
Ḣ1+ Ḣ2+ Ḣ3+ H2

1 + H2
2 + H2

3 + H1H2+ H2H3+ H1H3
)
. (16)
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Using them, the components ofEW can be explicitly computed from Eqs. (7) to
(10),

Wφ = ψ

Wψ = −pψ − V ′(φ)+ 1

2
F ′(φ)R(φ, ψ),

Wp = −
[
(F(φ)+ 2F ′(φ)2)p2+ 3

2
(1+ 2F ′′(φ))φ̇2− 3V(φ)− 3F ′(φ)V ′(φ)

−pφ̇ + (F(φ)+ F ′(φ)2)(q2+ r 2− qr )

]
/(2F1(φ))

Wq = −
(

p+ F ′(φ)

F(φ)
ψ

)
q,

Wr = −
(

p+ F ′(φ)

F(φ)
ψ

)
r. (17)

The divergence theorem assures us that the volumeV of a closed hypersurfaceSt

of P evolves in time as

V̇(t) =
∫

St

(div EW) d vol, (18)

where the integral is performed in the region enclosed bySt . The divergence of the
vector field EW determines, therefore, how fast a volume of a closed hypersurface of
P is expanded (divEW > 0) or contracted (divEW < 0). For conservative systems,
one has divEW = 0. A straightforward calculation here give us

div EW = −p− 2

(
p+ F ′(φ)

F(φ)
ψ

)

− (F(φ)+ 2F ′(φ)2)p+ (F ′(φ)(1+ F ′′(φ))− 1
2 F ′(φ)

)
ψ

F1(φ)
(19)

It is clear from Eq. (19) that our system suffers violent contractions and/or expan-
sions in the neighborhood of the hypersurfacesF(φ) = 0 andF1(φ) = 0. Let us
consider each of them separately since they lead to different kinds of singularity.

3. PHASE SPACE CONTRACTION AND EXPANSION NEAR F(φ) = 0

Homogeneous and isotropic solutions, for whoseq = r = 0, are known to
be perfectly regular onF(φ) = 0 (Gunziget al., 2001), in contrast to Eq. (19)
that presents unequivocally a divergence on this hypersurface. A closer analysis
of the vector fieldEW (17) reveals that the divergent contractions and expansions
nearF(φ) = 0 are associated to the directionsq andr , namely the quantities that
measure the anisotropy of the solution. The other directions of the flux defined byW
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are regular on the hypersurfaceF(φ). That means that if a solution is perpendicular
to the divergent directionsq andr , solutions for whichq = r = 0, i.e. isotropic
solutions, it will evolve without suffering any violent contraction or expansion in
the other directions ofP. SinceWq andWr are proportional toq andr , respectively,
an initially isotropic solutionq(0)= r (0)= 0 remains isotropic for all lattert ,
q(t) = r (t) = 0. We can say that isotropic solutions are orthogonal to the divergent
fluxes. However, any amount, no matters how small, of anisotropy (nonvanishing
q or r ) will break the orthogonality and the solution will prove the divergent
directions, being strong contracted or expanded. This is the dynamical origin of
the instabilities of anisotropic solutions nearF(φ) = 0.

Let us suppose now thatF ′(φ) 6= 0 on the hypersurfaceF(φ) = 0 (if F ′(φ)
vanishes on the hypersurfaceF ′(φ) = 0, then by Eq. (2) both hypersurfacesF(φ) =
0 andF1(φ) = 0 coincide). The corresponding pole onφ0 (F(φ0) = 0) in the vol-
ume integral (18) will have as numerator the factor−2F ′(φ0)ψ , implying that the
flux defined by Eq. (17) passes from a catastrophic contraction to a catastrophic
expansion as one passes byφ0. SinceWφ = ψ (see Eq. (17)), any solution ap-
proaching the hypersurfaceF(φ) = 0 withψ 6= 0 (we excluded from the analysis
the possibility of having fixed points onF(φ) = 0, for these cases, of course, it
makes no sense to talk about “crossing”F(φ) = 0) will cross it and, hence, prove
the divergent phases of contraction and expansion.

In the expanding “side” of the hypersurfaceF(φ) = 0, q andr diverges as
φ→ φ0, and the system will be unavoidably driven toward a spacetime singular-
ity (Abramo et al., 2003), as we can conclude by considering, for instance, the
Kretschman invariantI = RabcdRabcd, which for the metric (5) is given by

I = 4
((

Ḣ1+ H2
1

)2+ (Ḣ2 + H2
2

)2+ (Ḣ3+ H2
3

)2+ H2
1 H2

2 + H2
1 H2

3 + H2
2 H2

3

)
.

(20)

The invariantI is the sum of non-negative terms. Moreover, any divergence of
the variablesH1, H2, H3, or of their time derivatives, would suppose a divergence
in I , characterizing a real geometrical singularity. Since the relation between the
variablesp, q, r , andH1, H2, H3 is linear, any divergence inp, q, r or of their
time derivative, will suppose a divergence inI .

4. PHASE SPACE CONTRACTION AND EXPANSION NEAR F1(φ) = 0

The hypersurfaceF1(φ) = 0, as the previously one considered in the last
section, also separates regions of catastrophic contraction and expansion in the
phase spaceP. However, in contrast to the previous one, this hypersurface leads
to singularities even for homogeneous and isotropic solutions. The divergent di-
rections now arep andψ , and there are no solutions of (15) orthogonal to them,
since, in contrast to theq andr directions, for whichWq andWr are respectively
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proportional toq and r , Wψ and Wp do not vanish forψ = 0 and p = 0. In
this case, no solution can escape from crossingF1(φ) = 0. In the expanding side
of F1(φ) = 0, p→∞ asφ→ φ1 (F1(φ) = 0), implying the divergence of the
invariant (20).

5. FINAL REMARKS

The singularities described in the precedent section imply that the model
presented in the literature (Gunziget al., 2001; Saaet al., 2001) is not robust,
since its main conclusions were a consequence of very especial initial conditions,
i.e. they are valid only for solutions orthogonal (namely the isotropic ones) to
the divergently expanding directionsq andr . For instance, all homogeneous and
isotropic solutions crossing theF(φ) = 0 hypersurface are extremely unstable
against anisotropic perturbations. Any deviation from perfect isotropy (expressed
by nonvanishingq andr variables) for these solutions, however small, will lead
catastrophically to a geometrical singularity. Many of the novel dynamical behav-
iors presented in the literature (Gunziget al., 2001; Saaet al., 2001) depend on these
solutions. This is the case, for instance, of some solutions exhibiting superinfla-
tion regimes. The heteroclinic and homoclinic solutions identified in the literature
(Gunziget al., 2001; Saaet al., 2001) can cross theF(φ) = 0 hypersurface and,
hence, they also suffer the same instability against anisotropic perturbations. The
homoclinic solutions were considered as candidates to describe a nonsingular cos-
mological history, with the big-bang singularity being avoided through a classical
birth of the universe from empty Minkowski space. Apart fromF(φ) = 0 singu-
larities, these solutions are also affected by the singularities of the typeF1(φ) = 0.
Suppose that the conformal coupling is disturbed by a very small negative term
F(φ) = 1− ( 1

6 − ε)φ2. TheF1(φ) = 0 singularities will be near theφ = ±1/
√
ε

hypersurfaces. Although they are located far from theF(φ) = 0 regions, they alter
the global structure of the phase-space. In this case, they restrict the existence of
homoclinics, rendering a nonsingular cosmological history more improbable.

The singularities do not affect the conclusions obtained by considering so-
lutions inside theF(φ) > 0 region. The asymptotic solutions presented in the
literature (Saaet al., 2001), for instance, are still valid. The conclusion that for
larget the dynamics of any solution (insideF(φ) > 0) tends to an infinite diluted
matter-dominated universe remains valid. Moreover, for small anisotropic devi-
ations (q andr small in comparison withp), the solutions insideF(φ) > 0, for
larget , approach exponentially isotropic matter-dominated universe.

A singularity-free model can be constructed by demanding a well-behaved div
EW on both hypersurfaces. This can be achieved (Abramoet al., 2003) by requiring
F(φ0) = F ′(φ0) = 0, and by choosing aV(φ) that goes to 0 at a proper rate when
φ→ φ0. MoreoverF1(φ) must have no other zeros than the ones ofF(φ). Models
for which F(φ) = ζφ2n andV(φ) = αφ2(2n−1)+ high order terms, for instance,
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fulfill these requirements. However, such a highly fine-tuned class of model is of
no physical interest here, since it does not containF(φ) > 0 andF(φ) < 0 regions
and consequently has no solution for which the effective gravitational constantGeff

changes it sign along the cosmological history. The stability of such solutions were
the starting point of the analyses of the pioneering work (Starobinski, 1981) and
of the present one as well.
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